# BOUNDS ON MINIMUM DISTANCE IN CONSTACYCLIC CODES 

DIANA RADKOVA, A. J. VAN ZANTEN

"St. KI. Ohridski" University of Sofia, Faculty of Mathematics and Informatics Department of Algebra 5 James Bouchier Blvd., 1164 Sofia, Bulgaria<br>Delft University of Technology,<br>Faculty of Information Technology and Systems<br>Department of Mathematics,<br>P.O. Box 5031, 2600 GA Delft, The Netherlands

18.06.2008

## Definition

Let a be a nonzero element of $F=\operatorname{GF}(q)$. A code $C$ of length $n$ over $F$ is called constacyclic with respect to $a$, if whenever $\mathbf{x}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is in $C$, so is $\mathbf{y}=\left(a c_{n}, c_{1}, \ldots, c_{n-1}\right)$.

Definition
Let a be a nonzero element of $F=\operatorname{GF}(q)$. A code $C$ of length $n$ over $F$ is called constacyclic with respect to $a$, if whenever $\mathrm{x}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is in $C$, so is $\mathrm{y}=\left(a c_{n}, c_{1}, \ldots, c_{n-1}\right)$.

- Let $0 \neq a \in F$ and let

$$
\psi_{a}:\left\{\begin{array}{l}
F^{n} \rightarrow F^{n} \\
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(a x_{n}, x_{1}, \ldots, x_{n-1}\right)
\end{array}\right.
$$

## Definition

Let a be a nonzero element of $F=\operatorname{GF}(q)$. A code $C$ of length $n$ over $F$ is called constacyclic with respect to $a$, if whenever $\mathbf{x}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is in $C$, so is $\mathbf{y}=\left(a c_{n}, c_{1}, \ldots, c_{n-1}\right)$.

- Let $0 \neq a \in F$ and let

$$
\psi_{a}:\left\{\begin{array}{l}
F^{n} \rightarrow F^{n} \\
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(a x_{n}, x_{1}, \ldots, x_{n-1}\right)
\end{array}\right.
$$

- Then $\psi_{a} \in \operatorname{Hom} F^{n}$ and it has the following matrix

$$
A(n, a)=A=\left(\begin{array}{ccccc}
0 & 0 & 0 & \ldots & a \\
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

with respect to the standard basis $e=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right)$.

- The characteristic polynomial of $A$ is

$$
f_{A}(x)=(-1)^{n}\left(x^{n}-a\right)=f(x) .
$$

- The characteristic polynomial of $A$ is

$$
f_{A}(x)=(-1)^{n}\left(x^{n}-a\right)=f(x) .
$$

- Let $f(x)=(-1)^{n} f_{1}(x) \ldots f_{t}(x)$ be the factorization of $f(x)$ into irreducible factors over $F$.
- The characteristic polynomial of $A$ is

$$
f_{A}(x)=(-1)^{n}\left(x^{n}-a\right)=f(x) .
$$

- Let $f(x)=(-1)^{n} f_{1}(x) \ldots f_{t}(x)$ be the factorization of $f(x)$ into irreducible factors over $F$.
- $U_{i}=\operatorname{Ker} f_{i}\left(\psi_{\mathrm{a}}\right), i=1, \ldots, t$.

Theorem
Let $C$ be a linear constacyclic code of length $n$ over $F$. Then the following facts hold:

Theorem
Let $C$ be a linear constacyclic code of length $n$ over $F$. Then the following facts hold:

1) $C$ is a constacyclic code iff $C$ is a $\psi_{a}$-invariant subspace of $F^{n}$;

Theorem
Let $C$ be a linear constacyclic code of length $n$ over $F$. Then the following facts hold:

1) $C$ is a constacyclic code iff $C$ is a $\psi_{a}$-invariant subspace of $F^{n}$;
2) $C=U_{i_{1}} \oplus \cdots \oplus U_{i_{s}}$ for some minimal $\psi_{a}-$ invariant subspaces
$U_{i_{r}}$ of $F^{n}$ and $k:=\operatorname{dim}_{F} C=k_{i_{1}}+\cdots+k_{i_{s}}$;

Theorem
Let $C$ be a linear constacyclic code of length $n$ over $F$. Then the following facts hold:

1) $C$ is a constacyclic code iff $C$ is a $\psi_{a}$-invariant subspace of $F^{n}$;
2) $C=U_{i_{1}} \oplus \cdots \oplus U_{i_{s}}$ for some minimal $\psi_{a}-$ invariant subspaces
$U_{i_{r}}$ of $F^{n}$ and $k:=\operatorname{dim}_{F} C=k_{i_{1}}+\cdots+k_{i_{s}}$;
3) $f_{\psi_{a} \mid c}(x)=(-1)^{k} f_{i_{1}}(x) \ldots f_{i_{s}}(x)=g(x)$;

Theorem
Let $C$ be a linear constacyclic code of length $n$ over $F$. Then the following facts hold:

1) $C$ is a constacyclic code iff $C$ is a $\psi_{a}$-invariant subspace of $F^{n}$;
2) $C=U_{i_{1}} \oplus \cdots \oplus U_{i_{s}}$ for some minimal $\psi_{a}-$ invariant subspaces
$U_{i_{r}}$ of $F^{n}$ and $k:=\operatorname{dim}_{F} C=k_{i_{1}}+\cdots+k_{i_{s}}$;
3) $f_{\psi_{\mathrm{a}} \mid c}(x)=(-1)^{k} f_{i_{1}}(x) \ldots f_{i_{s}}(x)=g(x)$;
4) $\mathrm{c} \in C$ iff $g(A) \mathrm{c}=0$;

Theorem
Let $C$ be a linear constacyclic code of length $n$ over $F$. Then the following facts hold:

1) $C$ is a constacyclic code iff $C$ is a $\psi_{a}$-invariant subspace of $F^{n}$;
2) $C=U_{i_{1}} \oplus \cdots \oplus U_{i_{s}}$ for some minimal $\psi_{a}-$ invariant subspaces
$U_{i_{r}}$ of $F^{n}$ and $k:=\operatorname{dim}_{F} C=k_{i_{1}}+\cdots+k_{i_{s}}$;
3) $f_{\psi_{a} \mid c}(x)=(-1)^{k} f_{i_{1}}(x) \ldots f_{i_{s}}(x)=g(x)$;
4) $\mathrm{c} \in C$ iff $g(A) \mathrm{c}=\mathbf{0}$;
5) the polynomial $g(x)$ has the smallest degree with respect to property 4);

Theorem
Let $C$ be a linear constacyclic code of length $n$ over $F$. Then the following facts hold:

1) $C$ is a constacyclic code iff $C$ is a $\psi_{a}$-invariant subspace of $F^{n}$;
2) $C=U_{i_{1}} \oplus \cdots \oplus U_{i_{s}}$ for some minimal $\psi_{a}-$ invariant subspaces
$U_{i_{r}}$ of $F^{n}$ and $k:=\operatorname{dim}_{F} C=k_{i_{1}}+\cdots+k_{i_{s}}$;
3) $f_{\psi_{a} \mid c}(x)=(-1)^{k} f_{i_{1}}(x) \ldots f_{i_{s}}(x)=g(x)$;
4) $\mathrm{c} \in C$ iff $g(A) \mathrm{c}=0$;
5) the polynomial $g(x)$ has the smallest degree with respect to property 4);
6) $\operatorname{rank}(g(A))=n-k$.

## Theorem

Let $C$ be a linear constacyclic code of length $n$ over $F$. Then the following facts hold:

1) $C$ is a constacyclic code iff $C$ is a $\psi_{a}$-invariant subspace of $F^{n}$;
2) $C=U_{i_{1}} \oplus \cdots \oplus U_{i_{s}}$ for some minimal $\psi_{a}-$ invariant subspaces
$U_{i_{r}}$ of $F^{n}$ and $k:=\operatorname{dim}_{F} C=k_{i_{1}}+\cdots+k_{i_{s}}$;
3) $f_{\psi_{a} \mid c}(x)=(-1)^{k} f_{i_{1}}(x) \ldots f_{i_{s}}(x)=g(x)$;
4) $c \in C$ iff $g(A) c=0$;
5) the polynomial $g(x)$ has the smallest degree with respect to property 4);
6) $\operatorname{rank}(g(A))=n-k$.
7) The matrix $H$, the rows of which are an arbitrary set of $n-k$ linearly independent rows of $g(A)$, is a parity check matrix of $C$.

- Let $K=\operatorname{GF}\left(q^{m}\right)$ be the splitting field of the polynomial $f(x)=(-1)^{n}\left(x^{n}-a\right)$ over $F$ and let the eigenvalues of $\psi_{a}$ be $\alpha_{1}, \ldots, \alpha_{n}$, where $\alpha_{i}=\sqrt[n]{a} \alpha^{i}$.
- Let $K=\operatorname{GF}\left(q^{m}\right)$ be the splitting field of the polynomial $f(x)=(-1)^{n}\left(x^{n}-a\right)$ over $F$ and let the eigenvalues of $\psi_{a}$ be $\alpha_{1}, \ldots, \alpha_{n}$, where $\alpha_{i}=\sqrt[n]{a} \alpha^{i}$.

Theorem
Let $C$ be a linear constacyclic code of length $n$ over $F, g(x)=$ $f_{\psi, \mid c}(x)$ and $h(x)=\frac{f(x)}{g(x)}$. Let for some integers $b \geq 1$, and $\delta \geq 1$ the following equalities

$$
h\left(\alpha_{b}\right)=h\left(\alpha_{b+1}\right)=\cdots=h\left(\alpha_{b+\delta-2}\right)=0
$$

hold. Then the minimum distance of the code $C$ is at least $\delta$.

Definition
A set $M=\left\{\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{1}}\right\}$ of zeros of the polynomial $x^{n}-a$ in $K$ will be called a consecutive set of length / if a primitive $n-$ th root of unity $\beta$ and an exponent $i$ exist such that $M=\left\{\beta_{i}, \beta_{i+1}, \ldots, \beta_{i+l-1}\right\}$, with $\beta_{s}=\sqrt[n]{a} \beta^{s}$.

## Definition

A set $M=\left\{\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{1}}\right\}$ of zeros of the polynomial $x^{n}-a$ in $K$ will be called a consecutive set of length / if a primitive $n-$ th root of unity $\beta$ and an exponent $i$ exist such that $M=\left\{\beta_{i}, \beta_{i+1}, \ldots, \beta_{i+l-1}\right\}$, with $\beta_{s}=\sqrt[n]{a} \beta^{s}$.

Corollary
Let $C$ be a linear constacyclic code of length $n$ over $F$ and let

$$
\alpha_{b}, \alpha_{b+s}, \ldots, \alpha_{b+(\delta-2) s}
$$

are zeros of $h(x)$, where $(s, n)=1$. Then the minimum distance of $C$ is at least $\delta$.

Theorem
Let $C$ be a constacyclic code of length $n$ over the field $F$, $g(x)=f_{\psi_{a} \mid c}(x), h(x)=\frac{f(x)}{g(x)}$, and let $\alpha$ be a primitive $n$-th root of unity in $K$. Assume that there exist integers $s, b, c_{1}$ and $c_{2}$ where $s \geq 0, b \geq 0,\left(n, c_{1}\right)=1$ and $\left(n, c_{2}\right)<\delta$, such that

$$
h\left(\alpha_{b+i_{1} c_{1}+i_{2} c_{2}}\right)=0, \quad 0 \leq i_{1} \leq \delta-2,0 \leq i_{2} \leq s .
$$

Then the minimum distance $d$ of $C$ satisfies $d \geq \delta+s$.

Theorem
Let $C$ be a constacyclic code of length $n$ over the field $F$, $g(x)=f_{\psi_{a} \mid c}(x), h(x)=\frac{f(x)}{g(x)}$, and let $\alpha$ be a primitive $n$-th root of unity in $K$. Assume that there exist integers $s, b, c_{1}$ and $c_{2}$ where $s \geq 0, b \geq 0,\left(n, c_{1}\right)=1$ and $\left(n, c_{2}\right)<\delta$, such that

$$
h\left(\alpha_{b+i_{1} c_{1}+i_{2} c_{2}}\right)=0, \quad 0 \leq i_{1} \leq \delta-2,0 \leq i_{2} \leq s .
$$

Then the minimum distance $d$ of $C$ satisfies $d \geq \delta+s$.

## Definition

If $N=\left\{\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{t}}\right\}$ is a set of zeros of the polynomial $x^{n}-a$, we denote by $U_{N}$ the matrix of size $t$ by $n$ over $K$ that has $\left(\alpha_{i}, \alpha_{i}^{2}, \ldots, \alpha_{i_{j}}^{n}\right)$ as its $/$-th row, that is,

$$
U_{N}=\left(\begin{array}{cccc}
\alpha_{i_{1}} & \alpha_{i_{1}}^{2} & \ldots & \alpha_{i_{1}}^{n} \\
\alpha_{i_{2}} & \alpha_{i_{2}}^{2} & \ldots & \alpha_{i_{2}}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{i_{t}} & \alpha_{i_{t}}^{2} & \ldots & \alpha_{i_{t}}^{n}
\end{array}\right)
$$

## Definition

If $N=\left\{\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{t}}\right\}$ is a set of zeros of the polynomial $x^{n}-a$, we denote by $U_{N}$ the matrix of size $t$ by $n$ over $K$ that has $\left(\alpha_{i}, \alpha_{i}^{2}, \ldots, \alpha_{i_{1}}^{n}\right)$ as its $/$-th row, that is,

$$
U_{N}=\left(\begin{array}{cccc}
\alpha_{i_{1}} & \alpha_{i_{1}}^{2} & \ldots & \alpha_{i_{1}}^{n} \\
\alpha_{i_{2}} & \alpha_{i_{2}}^{2} & \ldots & \alpha_{i_{2}}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{i_{t}} & \alpha_{i_{t}}^{2} & \ldots & \alpha_{i_{t}}^{n}
\end{array}\right)
$$

- $U_{N}$ is a parity check matrix for the constacyclic code $C$ over $F$ having $N$ as a set of zeros of $h(x)$.


## Definition

If $N=\left\{\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{t}}\right\}$ is a set of zeros of the polynomial $x^{n}-a$, we denote by $U_{N}$ the matrix of size $t$ by $n$ over $K$ that has $\left(\alpha_{i}, \alpha_{i}^{2}, \ldots, \alpha_{i_{i}}^{n}\right)$ as its $/$-th row, that is,

$$
U_{N}=\left(\begin{array}{cccc}
\alpha_{i_{1}} & \alpha_{i_{1}}^{2} & \ldots & \alpha_{i_{1}}^{n} \\
\alpha_{i_{2}} & \alpha_{i_{2}}^{2} & \ldots & \alpha_{i_{2}}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{i_{t}} & \alpha_{i_{t}}^{2} & \ldots & \alpha_{i_{t}}^{n}
\end{array}\right) .
$$

- $U_{N}$ is a parity check matrix for the constacyclic code $C$ over $F$ having $N$ as a set of zeros of $h(x)$.
- Let $C_{N}$ be the constacyclic code over $K$ with $U_{N}$ as parity check matrix, and let this code has minimum distance $d_{N}$.

Theorem
If $N$ is a nonempty set of zeros of the polynomial $x^{n}-a$ and if $M$ is a set of $n-$ th roots of unity such that $|\bar{M}| \leq|M|+d_{N}-2$ for some consecutive set $\bar{M}$ containing $M$, then $d_{M N} \geq d_{N}+|M|-1$.

Theorem
If $N$ is a nonempty set of zeros of the polynomial $x^{n}-a$ and if $M$ is a set of $n-$ th roots of unity such that $|\bar{M}| \leq|M|+d_{N}-2$ for some consecutive set $\bar{M}$ containing $M$, then $d_{M N} \geq d_{N}+|M|-1$.

Corollary
Let $N, M$ and $\bar{M}$ be as in the previous theorem, with $N$ consecutive. Then $|\bar{M}|<|M|+|N|$ implies $d_{M N} \geq|M|+|N|$.

## Example

Take $n=25, q=7, a=-1$ and let $\mu$ be a primitive 50 -th root of unity. Then $\mu$ is a zero of the polynomial $x^{25}+1$. Let the zeros of $h(x)$ be $\mu^{i}$ with $i \in C_{1} \cup C_{5} \cup C_{17}$, where

$$
C_{1}=\{1,7,49,43\}, C_{5}=\{5,35,45,15\}, C_{17}=\{17,19,33,31\} .
$$

Since $\mu$ is a primitive 50 -th root of unity, it follows that $\alpha:=\mu^{2}$ is a primitive 25 -th root of unity. In terms of $\alpha_{i}$ the zeros of $h(x)$ can be written as

$$
\alpha_{2}, \alpha_{3} ; \alpha_{7}, \alpha_{8}, \alpha_{9} ; \alpha_{15}, \alpha_{16}, \alpha_{17} ; \alpha_{21}, \alpha_{22} ; \alpha_{24}, \alpha_{25}
$$

## Example

Take $n=25, q=7, a=-1$ and let $\mu$ be a primitive 50 -th root of unity. Then $\mu$ is a zero of the polynomial $x^{25}+1$. Let the zeros of $h(x)$ be $\mu^{i}$ with $i \in C_{1} \cup C_{5} \cup C_{17}$, where

$$
C_{1}=\{1,7,49,43\}, C_{5}=\{5,35,45,15\}, C_{17}=\{17,19,33,31\} .
$$

Since $\mu$ is a primitive 50 -th root of unity, it follows that $\alpha:=\mu^{2}$ is a primitive 25 -th root of unity. In terms of $\alpha_{i}$ the zeros of $h(x)$ can be written as

$$
\alpha_{2}, \alpha_{3} ; \alpha_{7}, \alpha_{8}, \alpha_{9} ; \alpha_{15}, \alpha_{16}, \alpha_{17} ; \alpha_{21}, \alpha_{22} ; \alpha_{24}, \alpha_{25}
$$

Take $N=\left\{\alpha_{i} \mid i=15,16\right\}$ and $M=\left\{\beta^{j} \mid j=0,2,3,4\right\}$ with $\beta=\alpha^{3}$. Then the elements of $M N$ are zeros of $h(x)$. Since $d_{N}=3$ and $|\bar{M}|=5 \leq|M|+d_{N}-2=4+3-2$, the last bound implies that $d \geq d_{M N} \geq|M|+d_{N}-1=6$.

## THANK YOU FOR YOUR ATTENTION

