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Definition
Let a be a nonzero element of F = GF(q). A code C of length n
over F is called constacyclic with respect to a, if whenever
x = (c1, c2, . . . , cn) is in C , so is y = (acn, c1, . . . , cn−1).

I Let 0 6= a ∈ F and let

ψa :

{
F n → F n

(x1, x2, . . . , xn) 7→ (axn, x1, . . . , xn−1)
.

I Then ψa ∈ HomF n and it has the following matrix

A(n, a) = A =


0 0 0 . . . a
1 0 0 . . . 0
0 1 0 . . . 0
...
...
...
. . .

...
0 0 0 . . . 0


with respect to the standard basis e = (e1, e2, . . . , en).
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I The characteristic polynomial of A is

fA(x) = (−1)n(xn − a) = f (x).

I Let f (x) = (−1)nf1(x) . . . ft(x) be the factorization of f (x)
into irreducible factors over F .

I Ui = Ker fi (ψa), i = 1, . . . , t.
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Theorem
Let C be a linear constacyclic code of length n over F . Then the
following facts hold:

1) C is a constacyclic code iff C is a ψa−invariant subspace of F n;
2) C = Ui1 ⊕ · · · ⊕ Uis for some minimal ψa−invariant subspaces
Uir of F n and k := dim FC = ki1 + · · ·+ kis ;

3) fψa|C (x) = (−1)k fi1(x) . . . fis (x) = g(x);

4) c ∈ C iff g(A)c = 0;

5) the polynomial g(x) has the smallest degree with respect to
property 4);
6) rank (g(A)) = n − k .
7) The matrix H, the rows of which are an arbitrary set of n − k
linearly independent rows of g(A), is a parity check matrix of C .
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I Let K = GF(qm) be the splitting field of the polynomial
f (x) = (−1)n(xn − a) over F and let the eigenvalues of ψa be
α1, . . . , αn, where αi = n

√
aαi .

Theorem
Let C be a linear constacyclic code of length n over F , g(x) =

fψa|C (x) and h(x) = f (x)
g(x) . Let for some integers b ≥ 1, and δ ≥ 1

the following equalities

h(αb) = h(αb+1) = · · · = h(αb+δ−2) = 0

hold. Then the minimum distance of the code C is at least δ.
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Definition
A set M = {αi1 , αi2 , . . . , αil} of zeros of the polynomial xn − a in
K will be called a consecutive set of length l if a primitive n−th
root of unity β and an exponent i exist such that
M = {βi , βi+1, . . . , βi+l−1}, with βs = n

√
aβs .

Corollary
Let C be a linear constacyclic code of length n over F and let

αb, αb+s , . . . , αb+(δ−2)s

are zeros of h(x), where (s, n) = 1. Then the minimum distance of
C is at least δ.
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Theorem
Let C be a constacyclic code of length n over the field F ,
g(x) = fψa|C (x), h(x) = f (x)

g(x) , and let α be a primitive n-th root of
unity in K . Assume that there exist integers s, b, c1 and c2 where
s ≥ 0, b ≥ 0, (n, c1) = 1 and (n, c2) < δ, such that

h(αb+i1c1+i2c2) = 0, 0 ≤ i1 ≤ δ − 2, 0 ≤ i2 ≤ s.

Then the minimum distance d of C satisfies d ≥ δ + s.
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Definition
If N = {αi1 , αi2 , . . . , αit} is a set of zeros of the polynomial xn − a,
we denote by UN the matrix of size t by n over K that has
(αil , α

2
il , . . . , α

n
il ) as its l−th row, that is,

UN =
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2
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n
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2
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n
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I UN is a parity check matrix for the constacyclic code C over F
having N as a set of zeros of h(x).

I Let CN be the constacyclic code over K with UN as parity
check matrix, and let this code has minimum distance dN .
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Theorem
If N is a nonempty set of zeros of the polynomial xn − a and if M is
a set of n−th roots of unity such that |M| ≤ |M|+ dN − 2 for some
consecutive set M containing M, then dMN ≥ dN + |M| − 1.

Corollary
Let N, M and M be as in the previous theorem, with N
consecutive. Then |M| < |M|+ |N| implies dMN ≥ |M|+ |N|.
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Example
Take n = 25, q = 7, a = −1 and let µ be a primitive 50−th root of
unity. Then µ is a zero of the polynomial x25 + 1. Let the zeros of
h(x) be µi with i ∈ C1 ∪ C5 ∪ C17, where

C1 = {1, 7, 49, 43}, C5 = {5, 35, 45, 15}, C17 = {17, 19, 33, 31}.

Since µ is a primitive 50−th root of unity, it follows that α := µ2 is
a primitive 25−th root of unity. In terms of αi the zeros of h(x)
can be written as

α2, α3; α7, α8, α9; α15, α16, α17; α21, α22; α24, α25.

Take N = {αi | i = 15, 16} and M = {βj | j = 0, 2, 3, 4} with
β = α3. Then the elements of MN are zeros of h(x). Since dN = 3
and |M| = 5 ≤ |M|+ dN − 2 = 4 + 3− 2, the last bound implies
that d ≥ dMN ≥ |M|+ dN − 1 = 6.
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